Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Clin Chim Acta ; 501: 216-221, 2020 Feb.
Article En | MEDLINE | ID: mdl-31707166

Isovaleric acidemia (IVA) is an inborn error of metabolism caused by deficiency of isovaleryl-CoA dehydrogenase. IVA clinical picture includes gastroenterological and progressive neurological symptoms which can lead to permanent disability and death. Early detection by newborn screening (NBS) and treatment promotes normal development. In this study, clinical summaries, biochemical measurements and targeted next generation sequencing (tNGS) data from the IVD gene were compared in 13 Mexican patients. The main symptoms were vomiting, feeding refusal, abdominal pain, impaired alertness, lethargy, stupor, coma; hypotonia, ataxia, hallucinations, seizures; anemia, neutropenia and pancytopenia. Mean blood concentration of isovalerylcarnintine was above the reference value (0.5 µM) in symptomatic patients (8.78 µM), as well as in the screen positive newborns (2.23 µM). The molecular spectrum of this cohort was heterogeneous, with 14 different variants identified, seven were previously-described, and seven were novel. The most frequent variant was c.158G > C (p.R53P). In this study, we found a long diagnostic delay (average of 44 months). Thus, it is essential to increase physician awareness of this treatable condition. Biochemical IVA NBS accompanied by molecular studies (e.g. tNGS) will permit identification of potentially asymptomatic forms of the disease, and improve genotype-phenotype relationship, management decisions and follow-up.


Amino Acid Metabolism, Inborn Errors/genetics , DNA/genetics , High-Throughput Nucleotide Sequencing , Isovaleryl-CoA Dehydrogenase/deficiency , Sequence Analysis, DNA , Amino Acid Metabolism, Inborn Errors/blood , Biomarkers/blood , Cohort Studies , Delayed Diagnosis , Female , Humans , Infant, Newborn , Isovaleryl-CoA Dehydrogenase/blood , Isovaleryl-CoA Dehydrogenase/genetics , Male , Mexico , Neonatal Screening , Tandem Mass Spectrometry
2.
J Dairy Res ; 75(1): 84-9, 2008 Feb.
Article En | MEDLINE | ID: mdl-18226302

During early lactation, many dairy cows develop fatty liver, which is associated with decreased health and reproductive performance. Currently, fatty liver can be detected reliably only by using liver biopsy followed by chemical or histological analysis, which is not practical in most on-farm situations. We tested whether digital analyses of hepatic ultrasonograms can be used to detect non-invasively fatty liver and estimate liver triacylglycerol content. A total of 49 liver biopsies and ultrasonograms were taken from 29 dairy cows within 2 weeks postpartum. The usefulness of 17 first- or second-order parameters from digital analysis of B-mode ultrasonograms were evaluated by discriminant, correlation, and regression analyses. A group of linear combinations of the 17 parameters correctly classified 40 of 49 samples into normal liver as well as mild, moderate and severe fatty liver when cut-off values were 1%, 5% and 10% and correctly classified 45 of 49 samples when cut-off values were 5% and 10% triacylglycerol of wet weight. A linear combination of 16 image parameters estimated triacylglycerol concentrations of 38 of the 39 liver samples below the cut-off value of 10% within 2.5% of liver wet weight, and a linear combination of 3 parameters estimated triacylglycerol concentrations of the 10 liver samples above the cut-off value of 10% within 2% of liver wet weight. Therefore, ultrasound imaging followed by digital analysis of sonograms has potential to non-invasively detect fatty liver and estimate liver triacylglycerol content.


Cattle Diseases/diagnosis , Fatty Liver/veterinary , Animals , Cattle , Cattle Diseases/diagnostic imaging , Dairying , Fatty Liver/diagnostic imaging , Female , Ultrasonography
...